Antenna Database
AISG-ST-ADB
vADB3.1.1.6

Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>ISSUE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th November 2018</td>
<td>vADB3.1.1.6</td>
<td>First public release.</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>FOREWORD</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>SCOPE</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>REFERENCES</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>VERSION COMPLIANCE</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>ABBREVIATIONS</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>TERMINOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>DEFINITIONS</td>
<td>9</td>
</tr>
<tr>
<td>8.</td>
<td>GENERAL ASPECTS</td>
<td>10</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>10</td>
</tr>
<tr>
<td>8.2</td>
<td>Subunit association</td>
<td>10</td>
</tr>
<tr>
<td>8.3</td>
<td>Array</td>
<td>10</td>
</tr>
<tr>
<td>8.4</td>
<td>Return codes</td>
<td>10</td>
</tr>
<tr>
<td>8.5</td>
<td>Resumption of operation</td>
<td>10</td>
</tr>
<tr>
<td>9.</td>
<td>LAYER 1</td>
<td>11</td>
</tr>
<tr>
<td>9.1</td>
<td>DC power consumption</td>
<td>11</td>
</tr>
<tr>
<td>10.</td>
<td>LAYER 2</td>
<td>12</td>
</tr>
<tr>
<td>11.</td>
<td>LAYER 7</td>
<td>13</td>
</tr>
<tr>
<td>11.1</td>
<td>Subunit type</td>
<td>13</td>
</tr>
<tr>
<td>11.2</td>
<td>Overview of commands for ADB subunits</td>
<td>13</td>
</tr>
<tr>
<td>11.3</td>
<td>Bearing representation</td>
<td>13</td>
</tr>
<tr>
<td>11.4</td>
<td>Mechanical tilt representation</td>
<td>14</td>
</tr>
<tr>
<td>11.5</td>
<td>ADB commands</td>
<td>14</td>
</tr>
<tr>
<td>11.5.1</td>
<td>ADB Get Antenna Info</td>
<td>14</td>
</tr>
<tr>
<td>11.5.2</td>
<td>ADB Get Antenna Port Info</td>
<td>15</td>
</tr>
<tr>
<td>11.5.3</td>
<td>ADB Get Antenna Array Info</td>
<td>17</td>
</tr>
<tr>
<td>11.5.4</td>
<td>ADB Set Antenna Installation Info</td>
<td>19</td>
</tr>
<tr>
<td>11.5.5</td>
<td>ADB Get Antenna Installation Info</td>
<td>23</td>
</tr>
<tr>
<td>11.5.6</td>
<td>ADB Set RF Path ID to Array</td>
<td>24</td>
</tr>
<tr>
<td>11.5.7</td>
<td>ADB Get RF Path ID of Array</td>
<td>26</td>
</tr>
<tr>
<td>ANNEX A</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
1. FOREWORD

This standard has been produced by the Antenna Interface Standards Group (AISG) to introduce and define new features and enhancement of the management system for antenna line devices (ALDs) with remote control and monitoring facilities. AISG v3.0 base document describes the common behaviour of antenna line devices with AISG interfaces and type-specific functionality is defined in subunit type standards. This subunit type standard covers the antenna line devices capable of storing the antenna information.

For purposes of compliance and AISG interoperability, users should note that the implementation of this subunit type standard is optional. However, once it is selected for inclusion in a product, the entire standard becomes mandatory.

This standard is independent of previous 3GPP specifications.
2. SCOPE

AISG v3.0 specifies the standard data interface between a primary, typically a base station, and antenna line devices (ALDs) which are manageable units, usually associated with base station antennas.

The standard is divided into the base document and several subunit type standards. This subunit type standard document describes the specific behaviour of the Antenna Database (ADB) subunit type.

This standard defines the functional behaviour of ADB subunits. The text of the standard defines explicitly what is required or permitted. Anything that is not explicitly allowed is not permitted.
3. REFERENCES
This AISG Standard incorporates provisions from other publications. These are cited in the text and the referenced publications are listed below. Where references are listed with a specific version or release, subsequent amendments or revisions of these publications apply only when specifically incorporated by amendment or revision of this AISG standard. For references listed without a version or release, the latest edition of the publication referred to applies.

1. AISG v3.0: “AISG v3.0”
2. AISG v3.0 STCM: “Subunit Type Compliance Matrix”
3. AISG APCC: “Antenna port colour coding standard”
4. 170217 NGMN P-BASTA Whitepaper v10.0: “Recommendation on Base Station Antenna Standards”
4. VERSION COMPLIANCE

The compliance of this standard with different version of AISG v3 baseline standard is defined in [2].
5. ABBREVIATIONS

Where abbreviations or acronyms are used in this document they have the following meanings:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Antenna Database</td>
</tr>
<tr>
<td>ALD</td>
<td>Antenna Line Device</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier</td>
</tr>
<tr>
<td>LHC</td>
<td>Left Hand Circular (Polarisation)</td>
</tr>
<tr>
<td>MALD</td>
<td>Multi-primary ALD</td>
</tr>
<tr>
<td>NGMN</td>
<td>Next Generation Mobile Networks</td>
</tr>
<tr>
<td>RET</td>
<td>Remote Electrical Tilt</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RHC</td>
<td>Right Hand Circular (Polarisation)</td>
</tr>
<tr>
<td>SALD</td>
<td>Single-primary ALD</td>
</tr>
<tr>
<td>TCC</td>
<td>Time-Consuming Command</td>
</tr>
<tr>
<td>Xpol+</td>
<td>Cross Polarisation, slant +45 degrees</td>
</tr>
<tr>
<td>Xpol-</td>
<td>Cross Polarisation, slant -45 degrees</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
</tbody>
</table>
6. TERMINOLOGY

Where the following terms are used in this document, they have the following meanings:

- **Antenna port**: RF port of the antenna with direction towards the basestation.

- **Array direction reference**: The direction from which the antenna is viewed to define its polarisation. Possible values are front and back. (Some vendors determine the array direction by looking at the antenna from the front and others by looking at the antenna from the back).

- **Array polarisation axis reference**: The axis from which the polarisation angle is measured in a clockwise direction. Possible values are horizontal or vertical. This assumes that the antenna is installed in its intended orientation.

- **Array**: An array is a logical group of single or dual polarized radiators inside the antenna radome supporting a common frequency band and a common beam shape and tilt [3].

- **Mechanical bearing**: The direction orthogonal to the axis of the antenna assembly, expressed in degrees East of the True North (ETN).

- **Mechanical tilt**: Tilt angle of the antenna in the vertical plane. Tilt at an angle below straight and level shall be represented by a positive number (down-tilt), while tilt at an angle above straight and level shall be represented by a negative number. Tilt is reported in decimal degrees, to one decimal place of accuracy, and then multiplied by 10 so that may be represented by an integer.

- **Polarisation**: Orientation of the electric field vector of the radio wave emitted by an array.
7. DEFINITIONS

Provenance_t is used to identify the origin of the data.

```c
Enumeration Provenance_t : uint8_t {
    NotSet ← 0
    Factory ← 1
    File ← 2
    Automatic ← 3
    Manual ← 4
}
```
8. GENERAL ASPECTS

8.1. General
There shall exist only one ADB subunit for each antenna.

8.2. Subunit association
An ADB subunit may be associated with several ports without any interconnection between these ports.

8.3. Array
The definition of array means that if the two polarisations of a physical dual polarized array are controlled by one common RET subunit, they are considered to be one dual polarized array.
Furthermore, if the two polarisations of physical dual polarized array are controlled by two independent RET subunits, they are considered as two independent single polarized arrays.
One RET subunit can control any number of arrays.

8.4. Return codes
This subunit type standard introduces the following subunit type specific return codes.

```
Enumeration ReturnCode_t : uint16_t {
    ADBNotAntennaPort ← 0x0300  // e.g. a RET-port
}
```

8.5. Resumption of operation
The following data shall be retained after reset:
- Antenna Installation data
- RF Path to Array data
9. LAYER 1

All definitions and specifications for ALDs in [1] regarding layer 1 shall be valid for ALDs which contain ADB subunits.

9.1. DC power consumption

ADB is not allowed to switch to HighPowerMode.
10. LAYER 2

All definitions and specifications for ALDs in [1] regarding layer 2 shall be valid for ALDs which contain ADB subunits.
11. LAYER 7

An ALD which contains an ADB subunit shall support the command set which is defined in [1] in addition to those commands specified in this standard.

11.1. Subunit type

<table>
<thead>
<tr>
<th>Subunit type</th>
<th>1-octet unsigned integer code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>0x03</td>
</tr>
</tbody>
</table>

Table 11.1-1: Subunit type code

11.2. Overview of commands for ADB subunits

The table below shows an overview of all commands used in this ADB subunit type standard. The following abbreviations are used in the Table 11.2-1: “Command set for ADB subunits”.

- M Mandatory
- O Optional
- - Not applicable

<table>
<thead>
<tr>
<th>ADB Command</th>
<th>Code</th>
<th>Initiator</th>
<th>Subunit</th>
<th>Timeout</th>
<th>M</th>
<th>M</th>
<th>M</th>
<th>no</th>
<th>no</th>
<th>no</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB Get Antenna Info</td>
<td>0x0300</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>ADB Get Antenna Port Info</td>
<td>0x0301</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>ADB Get Antenna Array Info</td>
<td>0x0302</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>ADB Set Antenna Installation Info</td>
<td>0x0303</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>ADB Get Antenna Installation Info</td>
<td>0x0304</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RW</td>
</tr>
<tr>
<td>ADB Set RF Path ID to Array</td>
<td>0x0305</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RW</td>
</tr>
<tr>
<td>ADB Get RF Path ID of Array</td>
<td>0x0306</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
</tbody>
</table>

Table 11.2-1: Command set for ADB subunits

11.3. Bearing representation

The bearing range supported is 0.0° – +359.9° East of True North. The bearing value is expressed in 0.1° units with a range of 0 – +3599.
11.4. Mechanical tilt representation

The mechanical tilt range supported is -90.0 – $+90.0$. The bearing value is expressed in 0.1° units with a range of -900 – $+900$.

11.5. ADB commands

11.5.1. ADB Get Antenna Info

Description (Informative):

On the receipt of this command the ADB subunit returns antenna information. The behaviour of the antenna model number and antenna serial number fields are vendor specific and it is possible that if a field replaceable submodule is exchanged in the field, info in these fields changes or is lost. The user may have to maintain this information manually during a field submodule replacement as it is not mandatory for the vendor to provide a mechanism for reading this information to the new submodule from the antenna.

Specification (Normative):

```c
PrimaryCommand ADBGetAntennaInfoCommand {
    CommandCode_t Command ← 0x0300
    CommandSequence_t PrimaryCommandSequence
    Subunit_t Subunit
    DataLength_t DataLength ← 0
}

ALDResponse ADBGetAntennaInfoResponse {
    CommandCode_t Command ← 0x0300
    CommandSequence_t PrimaryCommandSequence
    ReturnCode_t ReturnCode
    DataLength_t DataLength
    if (ReturnCode == OK) {
        uint8_t LengthOfAntennaModelNumber // max 32 octets
        UTF8String_t AntennaModelNumber
        Provenance_t AntModelNumberProvenance
        uint8_t LengthOfAntennaSerialNumber // max 32 octets
        UTF8String_t AntennaSerialNumber
        Provenance_t AntSerialNumberProvenance
        uint16_t NrOfArrays
        Provenance_t NrOfArraysProvenance
    }
    else {
        ALDState_t ALDState
        ConnectionState_t ConnectionState
    }
}
```
Enumeration ReturnCode_t {
 OK
 InvalidSubunitNumber
 InvalidSubunitType
 UnknownCommand
 FormatError
 Busy
 IncorrectState
 NotAuthorised
}

Primary specification (Normative):
ALD specification (Normative):
IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
ENDIF
result ← IsCommandAllowed(LIST{
 OperatingConnectionState,
 RestrictedConnectionState},
 Cmd.Command, CurrentPort)
UNLESS result.allowed THEN
 RETURN result.code
ENDIF
RETURN OK, AntennaModelNumber, AntennaSerialNumber, NrOfArrays and the corresponding lengths and provenances
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.2. ADB Get Antenna Port Info
Description (Informative):
On the receipt of this command the ADB subunit returns antenna port information.
Specification (Normative):
PrimaryCommand ADBGetAntennaPortInfoCommand { CommandCode_t Command ← 0x0301
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 2
 uint16_t PortNumber
}
ALDResponse ADBGetAntennaPortInfoResponse {
 CommandCode_t Command ← 0x0301
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 uint16_t NrOfArraysConnectedToThePort
 for(i = 0; i < NrOfArraysConnectedToThePort; i++)
 {
 uint8_t LengthOfArrayIDConnectedToThePort // max. 6
 TextString_t ArrayIDConnectedToThePort
 Provenance_t ArrayIDConnectedToThePortProvenance
 }
 } else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 }
}

Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidPortNumber
 InvalidSubunitNumber
 InvalidSubunitType
 ADBNotAntennaPort
 NotAuthorised
}

Primary specification (Normative):

ALD specification (Normative):

IF Cmd.PortNumber is not one of 1…MaxPort THEN
 RETURN InvalidPortNumber
 EXIT
ENDIF

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
 EXIT
ENDIF

IF (PortProperties[Cmd.PortNumber] bitwise AND RF) ≠ RF THEN
 RETURN ADBNotAntennaPort
 EXIT
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState,
 RestrictedConnectionState},
 Cmd.Command, CurrentPort)
UNLESS result.allowed THEN
 RETURN result.code
EXIT

RETURN OK, number of ArrayIDs connected to the port, their array IDs and the corresponding lengths and provenances
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.3. ADB Get Antenna Array Info

Description (Informative):

On the receipt of this command the ADB subunit returns antenna array information.

By combining the array direction reference, the polarisation axis reference and the polarisation value, all specified by the manufacturer and available through the ADB commands, the array polarisation is specified in a vendor independent and comparable way. This combination is only performed for slant linear polarisation. Array direction reference: Polarisation is defined looking at the antenna from the front or from the back [Value: Front or Back].

Polarisation angle reference: Starting from the vertical, to define polarisation is oriented 45 degrees clockwise or 45 degrees counter clockwise [Value: Clockwise or Counterclockwise].

For examples see Annex A

Specification (Normative):

```c
Bitfield ArrayPolarisation_t : uint8_t {
   Xpol+    : Bit 0
   Xpol-    : Bit 1
   Vertical : Bit 2
   Horizontal: Bit 3
   RHC      : Bit 4
   LHC      : Bit 5
}

Enumeration ArrayDirectionReference_t : uint8_t {
   Front ← 0 // As seen looking at the front of the
   // antenna
   Back ← 1 // As seen looking at the back of the
   // antenna
}

Enumeration ArrayPolarisationAxisReference_t : uint8_t {
   CW ← 0 // Polarisation reference axis is horizontal
   CCW ← 1 // Polarisation reference axis is vertical
}

PrimaryCommand ADBGetAntennaArrayInfoCommand {
   CommandCode_t   Command ← 0x032
   CommandSequence_t PrimaryCommandSequence
   Subunit_t        Subunit
   DataLength_t     DataLength ← 2
   uint16_t         ArrayNumber
}
```
ALDResponse ALDGetAntennaArrayInfoResponse {
 CommandCode_t Command ← 0x0302
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 uint16_t RelativeArrayPositionX
 Provenance_t RelativeArrayPositionXProvenance
 uint16_t RelativeArrayPositionY
 Provenance_t RelativeArrayPositionYProvenance
 uint16_t AzimuthBeamwidth3d // see [4]
 // paragraph 3.2.5
 Provenance_t AzimuthBeamwidth3dBProvenance
 uint16_t Gain // max value in dBi
 Provenance_t GainProvenance
 uint16_t ArrayFrequencies // see Chapter 11 in
 // AISG v3.0 base
 // standard
 Provenance_t ArrayFrequenciesProvenance
 ArrayPolarisation_t ArrayPolarisation[3]
 Provenance_t ArrayPolarisationProvenance
 PolarisationReference_t ReferenceValue
 Provenance_t ReferenceValueProvenance
 ArrayDirectionReference_t ArrayDirectionReference
 Provenance_t ArrayDirectionReferenceProvenance
 ArrayPolarisationAxisReference_t ArrayPolarisationAxisReference
 Provenance_t ArrayPolarisationAxisReferenceProvenance
 }
 else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 }
}

Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidArrayNumber
 InvalidSubunitNumber
 InvalidSubunitType
 NotAuthorised
}

Primary specification (Normative):

ALD specification (Normative):

IF Cmd.ArrayNumber is not one of 1..MaxArray THEN
 RETURN InvalidArrayNumber
 EXIT
ENDIF

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
 EXIT
ENDIF
result ← IsCommandAllowed(LIST{ OperatingConnectionState, RestrictedConnectionState}, Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

RETURN OK, Antenna array information and the corresponding provenances
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.4. ADB Set Antenna Installation Info

Description (Informative):

This command provides a method by which installation related data can be written to the non-volatile memory in the ADB.

On the receipt of this command the ADB subunit stores installation data in non-volatile memory. The bitfield InstallationDataToBeWritten controls which data fields are stored. The same bit in the bitfield controls the storage of the length of the data (where applicable), the data itself and its provenance.

The bits in the bitfield controls the storage of data as follows:

 Bit value 1: Corresponding data is stored together with length (where applicable) and provenance. Existing data is overwritten.

 Bit value 0: No data is written to the non-volatile memory and existing data is preserved. Any data matching the bit present in the message is ignored.

Specification (Normative):

Bitfield DataToBeStored_t : uint8_t {
 SectorID : Bit 0
 PositionWithinSector : Bit 1
 MechanicalBearing : Bit 2
 MechanicalTiltValue : Bit 3
}
PrimaryCommand ADBSetAntennaInstallationInfoCommand {
 CommandCode_t Command ← 0x0003
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength
 DataToBeStored_t InstallationDatatoBeStored
 uint8_t LengthOfSectorID // max 32 octet
 TextString SectorID
 Provenance_t SectorIDProvenance
 uint8_t LengthOfPositionWithinSector
 TextString PositionWithinSector
 Provenance_t PositionWithinSectorProvenance
 uint16_t MechanicalBearing
 Provenance_t MechanicalBearingProvenance
 uint16_t MechanicalTilt // Mechanical
 Provenance_t MechanicalTiltProvenance
}

ALDResponse ADBSetAntennaInstallationInfoResponse {
 CommandCode_t Command ← 0x0003
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 }
 else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 uint8_t ParameterNumber
 }
}

Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidSubunitNumber
 InvalidSubunitType
 NotAuthorised
}

Primary specification (Normative):

ALD specification (Normative):

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] ≠ ReadWrite THEN
 RETURN NotAuthorised
EXIT
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState,
 RestrictedConnectionState},
 Cmd.Command, CurrentPort)
UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF
IF (Cmd.InstallationDataToBeStored.InstallersID) THEN
 IF Cmd.LengthOfInstallersID > 32 THEN
 Response.ParameterNumber ← 0
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.InstallersIDProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 0
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the LengthOfInstallersID, InstallersID and InstallersIDProvenance to non-volatile memory
 ENDIF
ENDIF
IF (Cmd.InstallationDataToBeStored.BaseStationID) THEN
 IF Cmd.LengthOfBaseStationID > 32 THEN
 Response.ParameterNumber ← 1
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.BaseStationIDProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 1
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the LengthOfBaseStationID, BaseStationID and BaseStationIDProvenance to non-volatile memory
 ENDIF
ENDIF
IF (Cmd.InstallationDataToBeStored.SectorID) THEN
 IF Cmd.LengthOfSectorID > 32 THEN
 Response.ParameterNumber ← 2
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.SectorIDProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 2
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the LengthOfSectorID, SectorID and SectorIDProvenance to non-volatile memory
 ENDIF
ENDIF
ELSE
 Store the LengthOfSectorID, SectorID and SectorIDProvenance to non-volatile memory
ENDIF

ENDIF

IF (Cmd.InstallationDataToBeStored.LengthOfPositionWithinSector) THEN
 IF Cmd.LengthOfPositionWithinSector > 32 THEN
 Response.ParameterNumber ← 3
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.PositionWithinSectorProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 3
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the LengthOfPositionWithinSector, PositionWithinSector and PositionWithinSectorProvenance to non-volatile memory
 ENDIF
ENDIF

IF (Cmd.InstallationDataToBeStored.MechanicalBearing) THEN
 IF Cmd.MechanicalBearing > 3599 THEN
 Response.ParameterNumber ← 4
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.MechanicalBearingProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 4
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the MechanicalBearing and MechanicalBearingProvenance to non-volatile memory
 ENDIF
ENDIF

IF (Cmd.InstallationDataToBeStored.MechanicalTiltValue) THEN
 IF Cmd.MechanicalTiltValue > 900 OR Cmd.MechanicalTiltValue < −900 THEN
 Response.ParameterNumber ← 5
 RETURN OutOfRange
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSEIF Cmd.MechanicalBearingProvenance NOT IN (Manual, Automatic) THEN
 Response.ParameterNumber ← 5
 RETURN InvalidProvenance
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
 ELSE
 Store the MechanicalTiltValue and MechanicalBearingProvenance to non-volatile memory
 ENDIF
ENDIF
ELSE
 Store the MechanicalTiltValue and MechanicalTiltValueProvenance to non-volatile memory
ENDIF
ENDIF

IF the ALD detects a hardware error THEN
 RAISE AlarmGeneralError Severity Major on Cmd.Subunit, “Hardware error”
 RETURN GeneralError
ELSE
 RETURN OK
ENDIF
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.5. ADB Get Antenna Installation Info

Description (Informative):
On the receipt of this command the ADB subunit returns the installation data from the non-volatile memory.

Specification (Normative):

PrimaryCommand ADBGetAntennaInstallationInfoCommand {
 CommandCode_t Command ← 0x0304
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 0
}

ALDResponse ADBGetAntennaInstallationInfoResponse {
 CommandCode_t Command ← 0x0304
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 uint8_t LengthOfSectorID // max 32 octet
 TextString_t SectorID
 Provenance_t SectorIDProvenance
 uint8_t LengthOfPositionWithinSector
 TextString_t PositionWithinSector
 Provenance_t PositionWithinSectorProvenance
 uint16_t MechanicalBearing
 Provenance_t MechanicalBearingProvenance
 uint16_t MechanicalTiltValue // Mechanical
 // tilt in
 // degrees
 Provenance MechanicalTiltValueProvenance
 }
 else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 }
}
Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidSubunitNumber
 InvalidArrayNumber
 NotAuthorised
}

Primary specification (Normative):

ALD specification (Normative):

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState
 RestrictedConnectionState,
 MALDConfigConnectionState},
 Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
ENDIF

RETURN OK, SectorID, PositionWithinSector, MechanicalBearing, MechanicalTilt and the corresponding lengths and provenances
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.6. ADB Set RF Path ID to Array

Description (Informative):

On the receipt of this command the ADB subunit assigns the list of RF Path IDs to the specified array.

Specification (Normative):

NOTE: After any antenna line configuration change, the mapping of the RF Path ID must be revalidated and possibly regenerated.
PrimaryCommand ADBSetRFPathIDtoArrayCommand {
 CommandCode_t Command ← 0x0305
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength
 uint16_t ArrayNumber
 uint8_t NrOfRFPathIDs
 for(i = 0; i < NrOfRFPathIDs; i++) {
 uint16_t RFPathID
 }
}

ALDResponse ADBSetRFPathIDtoArrayResponse {
 CommandCode_t Command ← 0x0305
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 } else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 }
}

Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidSubunitNumber
 InvalidSubunitType
 InvalidArrayNumber
 TooManyArguments
 GeneralError
}

Primary specification (Normative):

ALD specification (Normative):

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] ≠ ReadWrite THEN
 RETURN NotAuthorised
 EXIT
ENDIF

IF Cmd.ArrayNumber is not one of 1..MaxArray THEN
 RETURN InvalidArrayNumber
 EXIT
ENDIF

IF Cmd.NrOfRFPathIDs > 6 THEN
 RETURN TooManyArguments
 EXIT
ENDIF
result ← IsCommandAllowed(LIST{ OperatingConnectionState},
Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

Store the RF path IDs for the supplied ArrayNumber to non-volatile memory

IF the ALD detects a hardware error THEN
 RAISE AlarmGeneralError Severity Major on Cmd.Subunit, “Hardware error”
 RETURN GeneralError
ELSE
 RETURN OK
ENDIF

CommandExit(Cmd.Command, CurrentPort)
EXIT

11.5.7. ADB Get RF Path ID of Array

Description (Informative):

On the receipt of this command the ADB subunit returns the RFPathID list for the requested array number.

Specification (Normative):

PrimaryCommand ADBGetRFPathIDOfArrayCommand {
 CommandCode_t Command ← 0x0306
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 2
 uint16_t ArrayNumber
}

ALDResponse ADBGetRFPathIDOfArrayResponse {
 CommandCode_t Command ← 0x0306
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 uint8_t NrOfRFPathIDs
 for(i = 0; i < NrOfRFPathIDs; i++){
 uint16_t RFPathID
 }
 } else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 }
}
Enumeration ReturnCode_t {
 OK
 FormatError
 Busy
 UnknownCommand
 IncorrectState
 InvalidSubunitNumber
 InvalidSubunitType
 InvalidArrayNumber
 NotAuthorised
}

Primary specification (Normative):

ALD specification (Normative):

IF ALDType = MALD
 AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
 EXIT
ENDIF

IF Cmd.ArrayNumber is not one of 1..MaxArray THEN
 RETURN InvalidArrayNumber
 EXIT
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState
 RestrictedConnectionState,
 MALDConfigConnectionState},
 Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

RETURN OK, number of stored RF path IDs and the list of RF path IDs of the requested Array
CommandExit(Cmd.Command, CurrentPort)
EXIT
ANNEX A
Examples and clarifying diagrams will be added in the next release of this document.