Remote Electrical Tilt
AISG-ST-RET
vRET3.1.1.7

Revision History

<table>
<thead>
<tr>
<th>DATE</th>
<th>ISSUE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th November 2018</td>
<td>vRET3.1.1.7</td>
<td>First public release.</td>
</tr>
</tbody>
</table>
1. FOREWORD .. 4
2. SCOPE ... 5
3. REFERENCES ... 6
4. VERSION COMPLIANCE ... 7
5. ABBREVIATIONS ... 8
6. TERMINOLOGY .. 9
7. DEFINITIONS ... 10
8. GENERAL ASPECTS ... 11
 8.1. Subunit association ... 11
 8.2. Array ... 11
 8.3. State models .. 11
 8.3.1. Subunit Calibration State model for layer 7 .. 11
 8.3.2. Subunit Jam State model for layer 7 ... 12
 8.3.3. RET Moving State model for layer 7 .. 12
 8.4. RET capabilities ... 13
 8.5. Reset ... 13
 8.6. Actuator movement .. 13
 8.7. Return codes .. 14
 8.8. RET subunit configuration ... 14
 8.9. Resumption of operation .. 15
9. LAYER 1 .. 16
 9.1. DC power consumption ... 16
10. LAYER 2 .. 17
11. LAYER 7 .. 18
 11.1. Subunit type .. 18
 11.2. Overview of commands for RET subunits ... 18
 11.3. Tilt representation .. 18
 11.4. RET commands .. 19
 11.4.1. RET Calibrate .. 19
 11.4.2. RET Set Tilt ... 19
 11.4.3. RET Get Tilt ... 21
 11.4.4. RET Get Capabilities .. 23
 11.4.5. RET Set Array ID to Subunit ... 24
 11.4.6. RET Calibrate Subunit .. 26

11.4.6. RET Get Array ID of Subunit...27
11.4.7. RET Clear Config ..29
1. FOREWORD

This standard has been produced by the Antenna Interface Standards Group (AISG) to introduce and define new features and enhancement of the management system for antenna line devices (ALDs) with remote control and monitoring facilities. AISG v3.0 base document describes the common behaviour of antenna line devices with AISG interfaces and type-specific functionality is defined in subunit type standards. This subunit type standard covers the antenna line devices capable of altering the electrical downtilt of an antenna.

For purposes of compliance and AISG interoperability, users should note that the implementation of this subunit type standard is optional. However, once it is selected for inclusion in a product, the entire standard becomes mandatory.

This standard is independent of previous 3GPP specifications.
2. SCOPE

AISG v3.0 specifies the standard data interface between a primary, typically a base station, and antenna line devices (ALDs) which are manageable units, usually associated with base station antennas.

The standard is divided into the base document and several subunit type standards. This subunit type standard document describes the specific behaviour of the Remote Electrical Tilt (RET) subunit type.

This standard defines the functional behaviour of RET subunits. The text of the standard defines explicitly what is required or permitted. Anything that is not explicitly allowed is not permitted.
3. REFERENCES

This AISG Standard incorporates provisions from other publications. These are cited in the text and the referenced publications are listed below. Where references are listed with a specific version or release, subsequent amendments or revisions of these publications apply only when specifically incorporated by amendment or revision of this AISG standard. For references listed without a version or release, the latest edition of the publication referred to applies.

1. AISG v3.0: “AISG v3.0”
2. AISG v3.0 STCM: “Subunit Type Compliance Matrix”
3. AISG-APCC: “Antenna Port Colour Coding Standard”
4. VERSION COMPLIANCE

The compliance of this standard with different version of AISG v3 baseline standard is defined in [2].
5. ABBREVIATIONS

Where abbreviations or acronyms are used in this document they have the following meanings:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD</td>
<td>Antenna Line Device</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>MALD</td>
<td>Multi-primary ALD</td>
</tr>
<tr>
<td>RET</td>
<td>Remote Electrical Tilt</td>
</tr>
<tr>
<td>SALD</td>
<td>Single-primary ALD</td>
</tr>
<tr>
<td>TCC</td>
<td>Time-Consuming Command</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
</tbody>
</table>
6. TERMINOLOGY

Where the following terms are used in this document, they have the following meanings:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>An array is a logical group of single or dual polarized radiators inside the antenna radome supporting a common frequency band and a common beam shape and tilt [3].</td>
</tr>
<tr>
<td>Calibrated by design</td>
<td>Intrinsically calibrated, does not allow user initiated calibration.</td>
</tr>
<tr>
<td>Electrical tilt</td>
<td>The electrical tilt angle is, in the vertical cut, the angle between the antenna mechanical boresight and the half-power beam axis. Positive tilt values represent main beam position below boresight. Negative tilt values represent main beam position above boresight.</td>
</tr>
<tr>
<td>Half-power beam axis</td>
<td>The half-power beamwidth is, in a radiation pattern cut containing the beam peak axis, the angle between the two closest directions in which the radiation intensity is one-half the maximum value; its bisect is called half-power beam axis.</td>
</tr>
<tr>
<td>Mechanical boresight</td>
<td>The axis perpendicular with the antenna aperture.</td>
</tr>
<tr>
<td>Jam</td>
<td>A condition in which actuator movement is not possible.</td>
</tr>
</tbody>
</table>
7. DEFINITIONS

uint32_t RETMovementCommandPort
8. GENERAL ASPECTS

8.1. Subunit association
A RET subunit may be associated with several ports without any interconnection between these ports.

8.2. Array
The definition of array means that if the two polarizations of a physical dual polarized array are controlled by one common RET, they are considered to be one dual polarized array. Furthermore, if the two polarizations of physical dual polarized array are controlled by two independent RETs, they are considered as two independent single polarized arrays. One RET can control any number of arrays.

8.3. State models
Unless otherwise explicitly allowed, these states shall be retained through a DC power cycle.

8.3.1. Subunit Calibration State model for layer 7
The subunit calibration state model in figure 8.3.1-1 “RETCalState state model” shows the transition between calibration states for a RET subunit.

In certain implementations, a DC power cycle during actuator movement may cause unknown position. In this circumstance the RET shall enter RETNotCalibratedState.

Enumeration RETCalState_t : uint8_t {
 RETNotConfiguredState ← 0
 RETNotCalibratedState ← 1
 RETCalibratedState ← 2
}

Figure 8.3.1-1 RETCalState state model
8.3.2. Subunit Jam State model for layer 7

The subunit jam state model in figure 8.3.2-1 “RETJamState state model” shows the transition between jam states for a RET subunit.

```
Enumeration RETJamState_t : uint8_t {
    RETNotJammedState ← 0
    RETJammedState ← 1
}
persistent Enumeration RETJamState_t RETJamState
```

![Figure 8.3.2-1 RETJamState state model](image)

8.3.3. RET Moving State model for layer 7

The RET Moving state model in figure 8.3.3-1 "RETMovement state model" shows the transition between actuator movement states that are common for all RET subunits in an ALD.

```
Enumeration RETMovementState_t : uint8_t {
    RETNotMovingState ← 0
    RETMovingState ← 1
}
```

![Figure 8.3.3-1 RETMovement state model](image)
8.4. RET capabilities

The RETCapabilities bitfield is set by design.

```c
Bitfield RETCapabilities_t : uint8_t {
  GetTiltDuringSetTiltSupported : Bit 0
  CalibratedByDesign : Bit 1
  ConfiguredByDesign : Bit 2
  ReservedForFuture4 : Bit 3 ← 0
  ReservedForFuture3 : Bit 4 ← 0
  ReservedForFuture2 : Bit 5 ← 0
  ReservedForFuture2 : Bit 6 ← 0
  ReservedForFuture2 : Bit 7 ← 0
}
```

8.5. Reset

On reset the persistent alarms are raised.

```c
ON Reset DO
  FOR I IN 1..NrOfSubunits – 1 DO
    IF Subunits[I].Type = RET THEN
      IF RETJamState[I] = RETJammedState THEN
        RAISE AlarmActuatorJammed SEVERITY Major ON SUBUNIT I
      ENDIF
      IF RETCalState[I] = RETNotConfiguredState THEN
        RAISE AlarmNotConfigured SEVERITY Major ON SUBUNIT I
      ELSEIF RETCalState[I] = RETNotCalibratedState THEN
        IF CalibratedByDesign[I] THEN
          RAISE AlarmInternalError SEVERITY Major ON ALD
        ELSE
          RAISE AlarmNotCalibrated SEVERITY Major ON SUBUNIT I
        ENDIF
      ENDIF
    ENDIF
  ENDIF
DONE
```

The tilt angle shall be nonvolatile through reset and DC power cycle.

8.6. Actuator movement

This pseudo code defines requirements that must be met all the time during the movement by the implementation specific actuator movement code.
ON position lost DO // Position lost detection is vendor specific
 SWITCH RETCalState TO RETNotCalibratedState
 SWITCH RETMovementState TO RETNotMovingState
 RAISE AlarmNotCalibrated SEVERITY Major ON Cmd.Subunit
 SWITCH DCPowerMode TO SteadyStatePowerMode
DONE

ON a jam is detected DO // Jam detection is vendor specific
 SWITCH RETJamState TO RETJammedState
 SWITCH RETMovementState TO RETNotMovingState
 RAISE AlarmActuatorJammed SEVERITY Major ON Cmd.Subunit
 SWITCH DCPowerMode TO SteadyStatePowerMode
DONE

ON jam recovered DO
 SWITCH RETJamState TO RETNotJammedState
 CLEAR AlarmActuatorJammed SEVERITY Major ON Cmd.Subunit
DONE

// Management of DC power mode following jam recovery is implementation specific
ON movement timeout occurred DO
 RAISE AlarmMovementTimeout SEVERITY Minor ON Cmd.Subunit

ENDDO

8.7. Return codes
This subunit type standard contains the following subunit type specific reason codes.

Enumeration ReturnCode_t : uint16_t {
 RETSetTiltFailed ← 0x0100
}

8.8. RET subunit configuration
RET configuration data is used to convert the electrical tilt values to actuator position. This data is specific to particular combinations of actuators and antenna array models.

The RET configuration data can be permanently programmed in the factory, loaded from the antenna when the ALD is installed, or downloaded by the primary. In the first two cases, the RET configuration is unwritable. In the third case, it is writable and its implementation is defined in base standard [1].

A RET with writable RET configuration data is configured by downloading the correct RET configuration file and unconfigured with the RETClearConfig command.
8.9. Resumption of operation

The following data shall be retained after reset:

- Configuration file (if applicable)
- Calibration
- Calibration state
- Tilt value
- Array ID to RET Subunit
9. LAYER 1

All definitions and specifications for ALDs in [1] regarding layer 1 shall be valid for ALDs which contain RET subunits.

9.1. DC power consumption

This subunit type standard contains two commands, Set Tilt and Calibrate, which allow the ALD to switch from SteadyStatePowerMode to HighPowerMode.
10. LAYER 2

All definitions and specifications for ALDs in [1] regarding layer 2 shall be valid for ALDs which contain RET subunits.
11. LAYER 7
An ALD which contains RET subunit(s) shall support the command set which is defined in [1] in addition to those commands specified in this standard.

11.1. Subunit type

<table>
<thead>
<tr>
<th>Subunit type</th>
<th>1-octet unsigned integer code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET</td>
<td>0x01</td>
</tr>
</tbody>
</table>

Table 11.1-1: Subunit type code

11.2. Overview of commands for RET subunits

The table below shows an overview of all commands used in this RET subunit type standard. The following abbreviations are used in the Table 11.2-1: “Commands for RET subunits”

M Mandatory
O Optional
- Not applicable

<table>
<thead>
<tr>
<th>RET Command</th>
<th>Code</th>
<th>Initiator</th>
<th>Subunit</th>
<th>Timeout</th>
<th>TCC</th>
<th>Primary</th>
<th>SALD</th>
<th>MALD</th>
<th>Changes the ConnectionState</th>
<th>Changes to HighPowerMode</th>
<th>Minimum require authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET Calibrate</td>
<td>0x0100</td>
<td>Primary</td>
<td>>0</td>
<td>4 min</td>
<td>yes</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>RET Set Tilt</td>
<td>0x0101</td>
<td>Primary</td>
<td>>0</td>
<td>2 min</td>
<td>yes</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>yes</td>
<td>RW</td>
</tr>
<tr>
<td>RET Get Tilt</td>
<td>0x0102</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>no</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>RET Get Capabilities</td>
<td>0x0103</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>no</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>RET Set Array ID to Subunit</td>
<td>0x0104</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>no</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>RW</td>
</tr>
<tr>
<td>RET Get Array ID of Subunit</td>
<td>0x0105</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>no</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>RO</td>
</tr>
<tr>
<td>RET Clear Config</td>
<td>0x0106</td>
<td>Primary</td>
<td>>0</td>
<td>1 s</td>
<td>no</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>no</td>
<td>no</td>
<td>RW</td>
</tr>
</tbody>
</table>

Table 11.2-1: Commands for RET subunits

11.3. Tilt representation

The tilt range supported is from −90.0° to +90.0°. The tilt value is expressed in 0.1° units with a range of −900 – +900. The tilt accuracy of the actual beam is not defined.
11.4. RET commands

11.4.1. RET Calibrate

Description (Informative):

The calibration command triggers a process during which internal representation of tilt angles is aligned with the physical position of the elevation beam. Some RETs, for example those with absolute position encoders, are intrinsically calibrated and do not require the calibration process to be performed.

Specification (Normative):

The tilt angle on completion of the Calibrate command is vendor specific, so to ensure the correct tilt setting the primary shall perform the Set Tilt command once the calibration is completed.

PrimaryCommand RETCalibrateCommand {
 CommandCode_t Command ← 0x0100
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 0
}

ALDResponse RETCalibrateResponse {
 CommandCode_t Command ← 0x0100
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 } else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 RETCalState_t RETCalState
 RETJamState_t RETJamState
 RETMovementState_t RETMovementState
 }
}

Enumeration ReturnCode_t {
 OK
 FormatError
 UnknownCommand
 Busy
 InvalidSubunitNumber
 InvalidSubunitType
 NotAuthorised
 IncorrectState
 NotConfigured
 InUseByAnotherPrimary
 CalibrationNotSupported
 CalibrationFailed
}
IF RETCalState[Cmd.Subunit] = RETNotConfiguredState THEN
 RETURN NotConfigured
 EXIT
ELSEIF RETCapabilities.CalibratedByDesign THEN // For example, uses absolute position
 // sensor
 RETURN CalibrationNotSupported
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState, RestrictedConnectionState}, Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

LOCK StateLock
IF RETMovementState = RETMovingState THEN
 IF RETMovementCommandPort = CurrentPort THEN
 RETURN Busy
 ELSE
 RETURN InUseByAnotherPrimary
 ENDIF
 UNLOCK StateLock
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
ENDIF

SWITCH RETMovementState TO RETMovingState
RETMovementCommandPort ← Current Port
UNLOCK StateLock
Switch electronics to consume DC power from the primary which sent the RETCalibrate command
SWITCH DCPowerMode TO HighPowerMode
Perform calibration
CLEAR AlarmMovementTimeout on Cmd.Subunit
IF calibration fails THEN //Raise appropriate alarms
 RETURN CalibrationFailed
ELSE
 RETURN OK
ENDIF

SWITCH DCPowerMode TO SteadyStatePowerMode
SWITCH RETMovementState TO RETNotMovingState
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.4.2. RET Set Tilt

Description (Informative):

On the receipt of this command the RET subunit sets the tilt of the main beam to the requested angle.

Specification (Normative):

PrimaryCommand RETSetTiltCommand {
 CommandCode_t Command ← 0x0101
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 2
 int16_t TiltValue
}

ALDResponse RETSetTiltResponse {
 CommandCode_t Command ← 0x0101
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 }
 else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 RETCalState_t RETCalState
 RETJamState_t RETJamState
 RETMovementState_t RETMovementState
 }
}
Enumeration ReturnCode_t {
 OK
 FormatError
 UnknownCommand
 Busy
 InvalidSubunitNumber
 InvalidSubunitType
 NotAuthorised
 IncorrectState
 InUseByAnotherPrimary
 NotCalibrated
 NotConfigured
 OutOfRange

 RETSetTiltFailed
}

IF the requested tilt angle is not supported THEN
 RETURN OutOfRange
ELSEIF RETCalState = RETNotConfiguredState THEN
 RETURN NotConfigured
ELSEIF RETCalState = RETNotCalibratedState THEN
 RETURN NotCalibrated
IF ALDType = MALD THEN
 UNLESS ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = ReadWrite THEN
 RETURN NotAuthorised
 EXIT
ENDIF
ENDIF

result ← IsCommandAllowed(LIST{ OperatingConnectionState, RestrictedConnectionState}, Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

LOCK StateLock
IF RETMovementState = RETMovingState THEN
 IF RETMovementCommandPort = CurrentPort THEN
 RETURN Busy
 ELSE
 RETURN InUseByAnotherPrimary
 ENDIF
 UNLOCK StateLock
 CommandExit(Cmd.Command, CurrentPort)
 EXIT
ENDIF
SWITCH RETMovementState TO RETMovingState
RETMovementCommandPort ← Current Port
UNLOCK StateLock
Switch electronics to consume DC power from the primary which requests the Set Tilt
Switch to HighPowerMode
CLEAR AlarmMovementTimeout on Cmd.Subunit
Perform Tilt change
IF tilt setting fails THEN // Raise appropriate alarms
 RETURN RETSetTiltFailed
ELSE
 RETURN OK
ENDIF
Switch to SteadyStatePowerMode
SWITCH RETMovementState TO RETNotMovingState
CommandExit(Cmd.Command, CurrentPort)
EXIT

11.4.3. RET Get Tilt

Description (Informative): On the receipt of this command the RET subunit shall return the current electrical tilt value.

Specification (Normative):

PrimaryCommand RETGetTiltCommand {
 CommandCode_t Command ← 0x0102
 CommandSequence_t PrimaryCommandSequence
 Subunit_t Subunit
 DataLength_t DataLength ← 0
}

ALDResponse RETGetTiltResponse {
 CommandCode_t Command ← 0x0102
 CommandSequence_t PrimaryCommandSequence
 ReturnCode_t ReturnCode
 DataLength_t DataLength
 if (ReturnCode == OK) {
 int16_t TiltValue
 }
 else {
 ALDState_t ALDState
 ConnectionState_t ConnectionState
 RETCalState_t RETCalState
 RETJamState_t RETJamState
 RETMovementState_t RETMovementState
 }
}
Enumeration ReturnCode_t{
 OK
 FormatError
 UnknownCommand
 Busy
 InvalidSubunitNumber
 InvalidSubunitType
 NotAuthorised
 IncorrectState
 NotCalibrated
 NotConfigured
 GeneralError
}

IF ALDType = MALD THEN
 IF ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
 RETURN NotAuthorised
 EXIT
 ENDIF
ENDIF

result ← IsCommandAllowed(LIST{
 OperatingConnectionState,
 RestrictedConnectionState),
 Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
 RETURN result.code
 EXIT
ENDIF

IF RETCalState = RETNotConfiguredState THEN
 RETURN NotConfigured
ELSEIF RETCalState = RETNotCalibratedState THEN
 RETURN NotCalibrated
ELSEIF current tilt value is unknown THEN
 RETURN GeneralError
ELSE
 RETURN OK, current tilt value
ENDIF

CommandExit(Cmd.Command, CurrentPort)
EXIT

11.4.4. RET Get Capabilities

Description (Informative):

On the receipt of this command the RET subunit returns the RET capabilities:

- Whether or not it is possible to query the tilt during a Set Tilt command
- Whether or not it is calibrated by design
- Whether or not it is configured by design
- Supported electrical tilt range
Primaries should use this command whenever the ALD has performed a reset and whenever the RET has been configured (if supported).

Specification (Normative):

```plaintext
PrimaryCommand RETGetCapabilitiesCommand {
    CommandCode_t Command ← 0x0103
    CommandSequence_t PrimaryCommandSequence
    Subunit_t Subunit
    DataLength_t DataLength ← 0
}

ALDResponse RETGetCapabilitiesResponse {
    CommandCode_t Command ← 0x0103
    CommandSequence_t PrimaryCommandSequence
    ReturnCode_t ReturnCode
    DataLength_t DataLength
    if (ReturnCode == OK) {
        int16_t MinTiltRange
        int16_t MaxTiltRange
        RETCapabilities_t RETCapabilities
    } else {
        ALDState_t ALDState
        ConnectionState_t ConnectionState
        RETCalState_t RETCalState
        RETJamState_t RETJamState
        RETMovingState_t RETMovingState
    }
}

Enumeration ReturnCode_t {
    OK
    FormatError
    UnknownCommand
    Busy
    IncorrectState
    InvalidSubunitNumber
    InvalidSubunitType
    NotAuthorised
}

**Primary specification (Normative):**

**ALD specification (Normative):**

IF ALDType = MALD
    AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
    RETURN NotAuthorised
EXIT
ENDIF

result ← IsCommandAllowed( LIST{
    OperatingConnectionState
    RestrictedConnectionState,
    MALDConfigConnectionState,
    Cmd.Command, CurrentPort)
UNLESS result.allowed THEN
    RETURN result.code
    EXIT
ENDIF
RETURN OK, tilt range and table of capabilities
CommandExit.CmdCommand, CurrentPort)
EXIT

11.4.5. RET Set Array ID to Subunit

Description (Informative):
On the receipt of this command the RET subunit stores the provided list of Array IDs.

Specification (Normative):

PrimaryCommand RETSetArrayIDToSubunitCommand {
    CommandCode_t Command ← 0x0104
    CommandSequence_t PrimaryCommandSequence
    Subunit_t Subunit
    DataLength_t DataLength
    uint16_t NrOfArrayIDs
    for(i = 0; i < NrOfArrayIDs; i++) {
        AsciiString ArrayID    // For instance ‘R1’, ‘Y2’
    }
}

ALDResponse RETSetArrayIDToSubunitResponse {
    CommandCode_t Command ← 0x0104
    CommandSequence_t PrimaryCommandSequence
    ReturnCode_t ReturnCode
    DataLength_t DataLength
    if (ReturnCode == OK) {
    } else {
        ALDState_t ALDState
        ConnectionState_t ConnectionState
        RETCalState_t RETCalState
        RETJamState_t RETJamState
        RETMovingState_t RETMovingState
    }
}

Enumeration ReturnCode_t {
    OK
    FormatError
    UnknownCommand
    Busy
    IncorrectState
    InvalidSubunitNumber
    InvalidSubunitType
    NotAuthorized
    InvalidArrayNumber
    GeneralError
}

Primary specification (Normative):
ALD specification (Normative):

IF ALDType = MALD THEN
    IF ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN
        RETURN NotAuthorised
        EXIT
    ENDIF
ENDIF

IF Cmd.ArrayNumber is not one of 1..MaxArray THEN
    RETURN InvalidArrayNumber
    EXIT
ENDIF

result ← IsCommandAllowed( LIST{ OperatingConnectionState},
                                   Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
    RETURN result.code
    EXIT
ENDIF

Store the Array IDs for the supplied Subunit to non-volatile memory

IF the ALD detects a hardware error THEN
    RAISE AlarmGeneralError Severity Major on Cmd.Subunit, “Hardware error”
    RETURN GeneralError
ELSE
    RETURN OK
ENDIF

CommandExit(Cmd.Command, CurrentPort)
EXIT

11.4.6. RET Get Array ID of Subunit

Description (Informative):

On the receipt of this command the RET subunit returns the Array ID list.

Specification (Normative):

PrimaryCommand RETGetArrayIDOfSubunitCommand {
    CommandCode_t Command ← 0x0105
    CommandSequence_t PrimaryCommandSequence
    Subunit_t Subunit
    DataLength_t DataLength ← 0
}
ALDResponse RETGetArrayIDofSubunitResponse {  
CommandCode_t Command ← 0x0105  
CommandSequence_t PrimaryCommandSequence  
ReturnCode_t ReturnCode  
DataLength_t DataLength  

if (ReturnCode == OK) {  
  uint16_t NrOfArrayIDs  
  for(i = 0; i < NrOfArrayIDs; i++) {  
    AsciiString ArrayID  
  }  
}  
else {  
  ALDState_t ALDState  
  ConnectionState_t ConnectionState  
  RETCalState_t RETCalState  
  RETJamState_t RETJamState  
  RETMovingState_t RETMovementState  
}  

Enumeration ReturnCode_t {  
  OK  
  FormatError  
  UnknownCommand  
  Busy  
  InvalidSubunitNumber  
  InvalidSubunitType  
  NotAuthorised  
  IncorrectState  
}  

Primary specification (Normative):  
ALD specification (Normative):  

IF ALDType = MALD  
  AND ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = NoAccess THEN  
  RETURN NotAuthorised  
  EXIT  
ENDIF  

result ← IsCommandAllowed( LIST{ OperatingConnectionState  
                                RestrictedConnectionState,  
                                MALDConfigConnectionState},  
                                Cmd.Command, CurrentPort)  

UNLESS result.allowed THEN  
  RETURN result.code  
  EXIT  
ENDIF  

RETURN OK, the supplied RET Subunit, number of stored Array IDs and the list of array IDs  
of requested RET Subunit  
CommandExit(Cmd.Command, CurrentPort)  
EXIT
11.4.7. RET Clear Config

Description (Informative):

On the receipt of this command the RET subunit shall clear RET configuration.

Specification (Normative):

PrimaryCommand RETClearConfigCommand {
  CommandCode_t Command ← 0x0106
  CommandSequence_t PrimaryCommandSequence
  Subunit_t Subunit
  DataLength_t DataLength ← 0
}

ALDResponse RETClearConfigResponse {
  CommandCode_t Command ← 0x0106
  CommandSequence_t PrimaryCommandSequence
  ReturnCode_t ReturnCode
  DataLength_t DataLength
  if (ReturnCode == OK) {
  } else {
    ALDState_t ALDState
    ConnectionState_t ConnectionState
    RETCalState_t RETCalState
    RETJamState_t RETJamState
    RETMovementState_t RETMovementState
  }
}

Enumeration ReturnCode_t{
  OK
  FormatError
  UnknownCommand
  Busy
  InvalidSubunitNumber
  InvalidSubunitType
  NotAuthorised
  IncorrectState
  ConfigurationNotSupported
}

IF ALDType = MALD THEN
  UNLESS ActiveAuth[CurrentPort].Authority[Cmd.Subunit] = ReadWrite THEN
    RETURN NotAuthorised
    EXIT
  ENDIF
ENDIF

result ← IsCommandAllowed( LIST{ OperatingConnectionState, RestrictedConnectionState}, Cmd.Command, CurrentPort)

UNLESS result.allowed THEN
  RETURN result.code
  EXIT
ENDIF
UNLESS RETCapabilities.ConfiguredByDesign THEN
   Erase RET configuration for subunit Cmd.Subunit
   RAISE AlarmNotConfigured SEVERITY Warning ON Cmd.Subunit
   RETURN OK
ELSE
   RETURN ConfigurationNotSupported
ENDIF

CommandExit(Cmd.Command, CurrentPort)
EXIT